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What is regularizationWhat is regularization

•• Two problems:Two problems:
– Ill-posed inverse problem

– So,how do we solute such problem Ax=y which is ill-posed
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What What is regularizationis regularization

•• Two problems:Two problems:
– Overfitting in machine learning regression problems:

– So,how do we decide which model is to be selected?
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What is regularizationWhat is regularization

•• Definition:Definition:
– Regularization was first introduced in the context of solving integral 

equation numerically by Tikhonov(1943).

– (Wikipedia)Regularization, in mathematics and statistics and 
particularly in the fields of machine learning and inverse problems, 
refers to a process of introducing additional prior information in order 
to solve an ill-posed problem or to prevent overfitting.

– (Inverse problems)Informally,Regularization is defined as it "Imposes 
stability on an ill-posed problem in a manner that yields accurate 
approximate solutions,often by incorporating prior information".

– One simple form of regularization is 
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What is regularizationWhat is regularization

•• Definition:Definition:
– Regularization provides methods for

• finding approximate and stable solutions of the ill-posed inverse 
problems.

• preventing overfitting or ensure the smoothness of regression 
function or solution.

– It was first designed for solving the ill-posed inverse 
problem,but later give rise to regularized learning algorithms.
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The theory of regularizationThe theory of regularization

•• The generalized regularization formThe generalized regularization form
– Linear System

– Learning algorithm system

•• The first term make sure that the measurement of fitting or the degree of The first term make sure that the measurement of fitting or the degree of 
consistence with the training examples.consistence with the training examples.

•• The second term make sure the simpler model or not the extreme solutions.The second term make sure the simpler model or not the extreme solutions.
•• So,here are two parameters                       to be decided.So,here are two parameters                       to be decided.
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The theory of regularizationThe theory of regularization

•• Typical regularization methodTypical regularization method——L1-norm regularizationL1-norm regularization

– By varying the parameter       we can sweep out the optimal trade-off 
curve between ||Ax-b||2 and ||x||1 ,which serves as an approximation of 
the optimal trade-off curve between ||Ax-b||2 and the sparsity or 
cardinality card(x) of the vector x,i.e.,the number of nonzero elements.

12
min xbAx 





Wenbao Li     DataMining Group Meeting Regularization and Its application in Data Mining      Regularization and Its application in Data Mining      99/45/45

The theory of regularizationThe theory of regularization

•• Typical regularization methodTypical regularization method——Tikhonov regularizationTikhonov regularization

– The penalty term is the form of squared L2 norm of x.
–      is the tikhonov matrix or tikhonov operator.When            ,it becomes 

the standard form. In many cases,
–              is the regularization parameter.
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The theory of regularizationThe theory of regularization

•• Typical regularization methodTypical regularization method——Smooth regularization Smooth regularization 
method(Special case of Tikhonov regularization)method(Special case of Tikhonov regularization)
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The theory of regularizationThe theory of regularization

•• Typical regularization methodTypical regularization method——Iterative Tikhonov Iterative Tikhonov 
regularizationregularization
– Once we have computed the Tikhonov solution , we may find a better 

approximation by applying Tikhonov regularization again using the 
previous finding soloution as initial solution.

– Parameter:
– Advantages:
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The theory of regularizationThe theory of regularization

•• Typical regularization methodTypical regularization method——Landweber iterationLandweber iteration

– use gradient descent

– use induction method we can derive
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The theory of regularizationThe theory of regularization

•• Typical regularization methodTypical regularization method——Bregman Iterative Bregman Iterative 
regularization(used for image restoring when first proposed)regularization(used for image restoring when first proposed)
–   rregularize is )(),()(min   :Probelm
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The theory of regularizationThe theory of regularization

•• Typical regularization methodTypical regularization method——Truncated SVDTruncated SVD
– Idea:Cut off components corresponding to small singular values.

– The definition of TSVD of A is 

– The TSVD solution of  
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The theory of regularizationThe theory of regularization

•• Typical regularization methodTypical regularization method——Truncated SVD Truncated SVD 
regularizationregularization
– Consider now regularization in standard form

– The definition of TSVD of A is 

– The TSVD solution of  
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The theory of regularizationThe theory of regularization

•• Typical regularization methodTypical regularization method——Truncated SVD Truncated SVD 
regularization(cont.)regularization(cont.)
– filter out the contributions to the solution corresponding to the smallest 

singular values

– The filter function can be shown as following


 





k

i
i

i

T
iiT

k

k
k vbubUVdiagx

1
222

1

1 )0,,0,,,(








 





k

i
i

i

T
iT

k
k vbubUVdiagx

11

)0,,0,1,,1(




niff
i

i
i

ki

kii
i ,,2,1,        

,0
,/1

2 




















Wenbao Li     DataMining Group Meeting Regularization and Its application in Data Mining      Regularization and Its application in Data Mining      1717/45/45

The theory of regularizationThe theory of regularization

•• The relation of regularization in linear system and in The relation of regularization in linear system and in 
learning algorithm systemlearning algorithm system
 training set 
 X is the n by d input matrix.
 Y=(Y1,...,Yn) is the output vector.
 k denotes the kernel function,K is the n by n kernel matrix with entries 

Kij=k(Xi,Xj) and H is the RKHS with kernel k.
 RLS estimator solves

 And we know the solution is 
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The theory of regularizationThe theory of regularization

•• ERMERM
– Similarly we can prove that the solution of empirical risk minimization

– can be written as

– So,what we should do is solving the problem Kc = Y
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The theory of regularizationThe theory of regularization

•• The role of regularizationThe role of regularization
– We observed that adding a penalization term can be interpreted as way 

to to control smoothness and avoid overfitting.

– From a numerical point of view:

• It stabilizes a possibly ill-conditioned matrix inversion problem.
• This is the point of view of regularization for (ill-posed) inverse problems.
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The theory of regularizationThe theory of regularization

•• Regularization as a filterRegularization as a filter
– Goal:solve
– In the finite-dimensional case, the main problem is numerical stability. 

For example, let the kernel matrix have

then

– But           doesn't always exist .That is terms in this sum with small 
eigenvalues σi give rise to numerical instability. For instance, if there 
are eigenvalues of zero, the matrix will be impossible to invert. As 
eigenvalues tend toward zero, the matrix tends toward rank-deficiency, 
and inversion becomes less stable. Statistically, this will correspond to 
high variance of the coefficients ci.
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The theory of regularizationThe theory of regularization

•• Regularization as a filter(cont.)Regularization as a filter(cont.)
– So,we take regularization into account.For example,tikhonov 

regularization

then

– This shows that regularization as the effect of suppressing the influence 
of small eigenvalues in computing the inverse. In other words, 
regularization flters out the undesired components.
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The theory of regularizationThe theory of regularization

•• Regularization as a filter(cont.)Regularization as a filter(cont.)
– So,we can define more general flters.Let           be a function on the 

kernel matrix.We  can eigendecompose K to define

– meaning

– For Tikhonov Regularization
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The theory of regularizationThe theory of regularization

•• Regularization as a filter(cont.)Regularization as a filter(cont.)
– For Landweber Iteration

– For TSVD
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The theory of regularizationThe theory of regularization

•• Regularization parameter selection criterion(for solving Regularization parameter selection criterion(for solving 
the inverse problem)the inverse problem)
– Gfrerer / Raus method

– Morozov's discrepancy principle(Ask for the norm of the residual to be 
equal to the norm of the noise vector)

– The quasi-optimality criterion

– Wahba:generalized cross validation

– Hansen:L-curve

 bAIAAAb TTT 42 )(min  
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The theory of regularizationThe theory of regularization

•• Regularization parameter selection criterionRegularization parameter selection criterion
– Gfrerer / Raus method

233 )( ebIAAb TT  
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The theory of regularizationThe theory of regularization

•• Regularization parameter selection criterionRegularization parameter selection criterion
– Morozov's discrepancy principle

• Ask for the norm of the residual to be equal to the norm of the noise 
vector(take tikhonov regularization as example)
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The theory of regularizationThe theory of regularization

•• Regularization parameter selection criterionRegularization parameter selection criterion
– The quasi-optimality criterion

• take tikhonov regularization as example
• Idea:choose parameter           such that0
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[Frank Bauer, Markus Reiÿ:Regularization independent of the noise level:an analysis of quasi-optimality]
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The theory of regularizationThe theory of regularization

•• Regularization parameter selection criterionRegularization parameter selection criterion
– Wahba:GCV

• For ridge regression problem

• The ridge estimate is 

• The GCV estimate of the parameter         is the minimizer of  
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The theory of regularizationThe theory of regularization

•• Regularization parameter selection criterionRegularization parameter selection criterion
– Hansen:L-curve

• For a regularization problem such as tikhonov regularization,there are two 
parts to be minimize,the regularization solution norm and the residual 
norm

• L-curve is actually the plot of these two quantities versus each other,i.e.,as 
a curve

[P.C. Hansen:The L-curve and its use in the numerical treatment of inverse problems]
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The theory of regularizationThe theory of regularization

•• Regularization parameter selection criterionRegularization parameter selection criterion
– Hansen:L-curve(cont.)

[P.C. Hansen:The L-curve and its use in the numerical treatment of inverse problems]

0, 0  xIL

The corner point is what we 
want
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The theory of regularizationThe theory of regularization

•• Regularization parameter selection criterionRegularization parameter selection criterion
– Hansen:L-curve(cont.)

• The definition of corner of L-curve
– the point on the L-curve                    with maximum curvature         given by 

equation

– where

[P.C. Hansen:The L-curve and its use in the numerical treatment of inverse problems]
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The theory of regularizationThe theory of regularization

•• Regularization parameter selection criterionRegularization parameter selection criterion
– Hansen:L-curve(cont.)

[P.C. Hansen:The L-curve and its use in the numerical treatment of inverse problems]
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The application of regularizationThe application of regularization

•• Application in machine learningApplication in machine learning——Ridge regressionRidge regression
– In the context of linear regression,n is the number of training 

examples,p is the number of features。
– Problems encountered when imposing generalized least squared error 

in linear regression.
• if n >> p,there's smaller error in least squared regression
• if n ≈ p,it's easy to produce overfitting.
• if n << p,least squared regression doesn't make sense about the result.
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The application of regularizationThe application of regularization

•• Application in machine learningApplication in machine learning——Ridge regression(cont.)Ridge regression(cont.)
– The above problem can be shown by the variance and its bias of 

error,which can be modeld by the following diagram.

– So,we need to find the trade-off of variance and bias.
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The application of regularizationThe application of regularization

•• Application in machine learningApplication in machine learning——Ridge regression(cont.)Ridge regression(cont.)
– With the complex model,the training examples are not enough to do 

regression.So,we need to do feature selection.
– There are two solutions,one of which is ridge regression
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The application of regularizationThe application of regularization

•• Application in machine learningApplication in machine learning——Lasso regressionLasso regression
– Based on the previous problem,another solution is lasso regression

• There is no analytical solution.But provide sparsity for solution.
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•• Application in machine learningApplication in machine learning
– Regularized linear regression
– Regularized logistic regression
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The application of regularizationThe application of regularization

•• Application in multi-task learning-Application in multi-task learning-Regularization-based Regularization-based 
MLTMLT
– MTL:learning multiple task simutanously so as to get better learning 

performance which comes from the related tasks.
– Key point:The relatedness among tasks.Different methods modeling the 

relatedness produce different algorithms.
– Regularization-based MTL:Take the relatedness among tasks as a prori 

of models then adding to the objective function as a regularizer.
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The application of regularizationThe application of regularization

•• Application in multi-task learning-Application in multi-task learning-Regularization-based Regularization-based 
MLT(Examples)MLT(Examples)
– Mean-Regularized Multi-Task Learning(Evgeniou & Pontil, 2004 KDD)

• Assumption: task parameter vectors of all tasks are close to each other.
• Advantage: simple, intuitive, easy to implement
• Disadvantage:may not hold in real applications.

• Regularization:penalizes the deviation of each task from the mean
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The application of regularizationThe application of regularization

•• Application in multi-task learning-Application in multi-task learning-Regularization-based Regularization-based 
MLT(Examples)MLT(Examples)
– Multi-Task Learning with Joint Feature Learning(Obozinski et. al. 

2009 Stat Comput, Liu et. al. 2010 Technical Report)
• Using group sparsity:               norm regularization
• When q>1 we have group sparsity
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The application of regularizationThe application of regularization

•• Application in multi-task learning-Application in multi-task learning-Regularization-based Regularization-based 
MLT(Examples)MLT(Examples)
– Dirty Model for Multi-Task Learning(Jalali et. al. 2010 NIPS)

• In practical applications, it is too restrictive to constrain all tasks to share a 
single shared structure
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The application of regularizationThe application of regularization

•• Application in multi-task learning-Application in multi-task learning-Regularization-based Regularization-based 
MLT(Examples)(outlier tasks)MLT(Examples)(outlier tasks)
– Robust Multi-Task Feature Learning(Gong et. al. 2012 Submitted)

• Simultaneously captures a common set of features among relevant tasks 
and identifies outlier tasks
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The application of regularizationThe application of regularization

•• Application in multi-task learning-Application in multi-task learning-Regularization-based Regularization-based 
MLT(Examples)MLT(Examples)

ON SO AND
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